Top Mass Measurements at CDF

Erik Brubaker
University of Chicago
for the CDF Collaboration

Moriond EWK Mar 11-18, 2006

The Top Quark

- Feels strong, electroweak, gravitational forces.
- Short-lived—doesn't hadronize (τ =5×10⁻²⁵ s).
- Especially interesting due to its mass
 - Most massive particle at ~175 GeV/c².
 - More massive than b quark by factor of 40.
- Studied directly only at the Tevatron.

Top Production, Decay, Selection

- Mass analyses use t-tbar pairs produced strongly.
 - ~85% quark annihilation,~15% gluon fusion.
- Top always decays to W boson and b quark.
 - Events classified by decay of W to leptons or quarks
 - Dilepton: $2*e|\mu$, MET, 2 jt
 - L+jets: $e|\mu$,MET,4 jt
 - All-hadronic: 6 jt
- B tagging (displaced vertex) improves S/B ratio.

Why Measure the Top Quark Mass?

- Fundamental parameter of Standard Model.
 - Unexpectedly large: m_b x 40
- Related through radiative corrections to other EW observables.
 - Very important for precision tests of SM.
 - With m_w, constrains m_H.
- SM Yukawa coupling ~ 1 → Special role in EWSB??

$$M_{t} = \frac{1}{\sqrt{2}} \lambda_{t} v$$

$$\Rightarrow \lambda_{t} = \frac{M_{t}}{173.9 \text{ GeV}/c^{2}}$$

A Difficult Measurement

- Complicated events
 - Only ~50% of l+jets events have leading 4 jets from tt decay.
- Jet energy resolution effect and jet energy scale systematics
 - Resolution 85%/ $\sqrt{E_T}$ \rightarrow statistical uncertainty.
 - Systematic $3\% \rightarrow$ systematic uncertainty.
- Background contamination
 - Well understood S:B of 1:1–10:1.
 - Must be treated properly to avoid bias.
- Run IIa goal for M_{top} (2 fb⁻¹)
 - CDF: 3 GeV/c² precision
 - Tevatron: 2 GeV/c² precision

Top Mass at CDF

- Robust program of top mass measurements
- Good statistics \rightarrow precision measurements
- Many analysis techniques with different sensitivities \rightarrow high confidence
- Five new results using 680-750 pb⁻¹.

Events (S+B) in $680-750 \text{ pb}^{-1}$

	Pretag	≥1 b tag	2 b tags
Dilepton	64	27	7
Lepton + Jets	360	252	57
All-hadronic		O(600)	

How to Weigh Truth

TEMPLATES

MATRIX ELEMENT

- 1. Pick a kinematic observable (e.g. Kinematic information reconstructed mass).
- 2. Create "templates" using events simulated with different M_{top} values (+ background).
- Perform maximum likelihood fit to extract measured mass. Both t

Both techniques rely on good Monte Carlo and detector simulation!

- 1. Build likelihood directly from PDFs, matrix

 + Dynamical element(s), and transfer functions that connect quarks and jets.
 - Integrate over unmeasured quantities (e.g. quark energies).
 - Calibrate measured mass and error using simulation.

Template Analysis (L+Jets) Overview

Template (L+Jets) Results—680 pb⁻¹

$$\Delta_{\text{JES}}$$
 = -0.3 ± 0.6 (stat. + M_{top}) σ_c
40% improvement in dominant JES systematic!

March 13, 2006 Moriond EWK 9

Template (L+Jets) Results—680 pb⁻¹

Likelihood contours in M_{top} - Δ_{JES} plane

Systematic	$\begin{array}{ c c }\hline \Delta M_{top} \\ (GeV/c^2) \end{array}$
Residual JES	0.7
B-jet energy scale	0.6
Bkgd JES	0.4
Bkgd Shape	0.5
ISR	0.5
FSR	0.2
Generators	0.3
PDFs	0.3
MC stats	0.3
B-tagging	0.1
TOTAL	1.3

$$M_{\text{top}} = 173.4 \pm 2.5 \text{ (stat)} \pm 1.3 \text{ (syst)} \text{ GeV/}c^2$$

March 13, 2006 Moriond EWK 10

Matrix Element (L+Jets) Overview

New method for 680 pb⁻¹ dataset!

Dynamical Likelihood Method (different ME analysis), 318 pb⁻¹:

PRL 96, 022004; hep-ex/0512009

· Likelihood simultaneously determines M_{top} , Jet Energy Scale, and signal fraction

$$P_o(\vec{x}; m_t, JES, c_s) \equiv c_s P_{t\bar{t}}(\vec{x}; m_t, JES) + (1-c_s) P_{W+jet}(\vec{x}; JES)$$

 Probabilities built from matrix element, transfer functions, and parton distribution functions

$$P_{t\bar{t}}(\vec{x}; m_t, JES) = \frac{1}{\sigma} \int d\sigma_{t\bar{t}}(\vec{y}; m_t) dq_1 dq_2 f(q_1) f(q_2) W(\vec{x}, \vec{y}, JES)$$

- JES sensitivity comes from W resonance.
- Uses kinematic & dynamical features of each event.
- All jet-parton assignments are considered, weighted.
- Select events with exactly 4 jets, well described by LO ME.
 - Require b tag to improve sample purity.

Matrix Element (L+jets) Technique

- Shows unbiased measurement.
- Errors rescaled to account for observed pull width.

- Corrects approximations in integration:
 - Angles perfectly measured
 - Lepton energy perfectly measured
 - Jets are from ttbar decay

Matrix Element (LJ) Results—680 pb⁻¹

- JES here is constant multiplicative factor.
 - $\quad E^{data} = E^{MC}/JES$
- JES = 1.02 ± 0.02 .
 - Very close to central value of template method

Systematic	$\Delta M_{top} (GeV/c^2)$
Add'l JES	0.7
Signal Modeling	1.1
Other	0.4
TOTAL	1.4

Virtually identical sensitivity with fewer events!

$$M_{\text{top}} = 174.1 \pm 2.5 \text{ (stat)} \pm 1.4 \text{ (syst)} \text{ GeV/}c^2$$

Decay Length Technique—680 pb⁻¹

- B hadron decay length \propto b-jet boost \propto M_{top}
- Difficult template analysis measure slope of exponential.
- But systematics are dominated by tracking effects
 - → Small correlation with traditional measurements!
- So far: L+jets channel, but extended acceptance—not limited to 4-jet events.
 - 375 events
- Statistics limited now
 - Can make significant contribution at LHC

Method: PRD 71, 054029

Transverse Decay Length - Tagged W +≥3 Jet Events

$$M_{\text{top}} = 183.9^{+15.7}_{-13.9} \text{ (stat)} \pm 5.6 \text{ (syst)} \text{ GeV/}c^2$$

Matrix Element (Dilepton) Technique

- Harder to reconstruct M_{top} in dilepton events: two neutrinos make system underconstrained.
 - More amenable to ME approach
- Likelihood is similar to L+jets.
 - No W resonance \rightarrow no fit for JES
 - Add ME for dominant bkgds: DY+jets, WW+jets, fakes
 Approximations have significant effect
 MC calibration essential
 Correct fitted mass for
- Approximations have significant effect

 - calibration slope of 0.85
 - Correct for pull width of 1.49 (constant in M_{top})
- Analysis performed also on tagged subsample.

	Events	S:B
≥0 b tags	64	~2:1
≥1 b tags	27	~20:1

Moriond EWK

This method, 340 pb⁻¹: hep-ex/0512070

March 13, 2006

15

Matrix Element (Dil) Results—750 pb⁻¹

- Best measurement in challenging dilepton channel.
- Could reach 2 GeV (stat) sensitivity by end of run II.

Systematic	$\Delta M_{top} (GeV/c^2)$
JES	2.6
Signal Modeling	1.1
Other	1.3
TOTAL	3.1

Restrict sample to b-tagged events: $M_{top} = 162.7 \pm 4.6 \pm 3.0 \text{ GeV/c}^2$

$$M_{\text{top}} = 164.5 \pm 4.5 \text{ (stat)} \pm 3.1 \text{ (syst)} \text{ GeV/}c^2$$

Combination of CDF Results

- Use BLUE (Best Linear Unbiased Estimator) technique.
 - NIM A270 110, A500 391.
- Accounts for correlations in systematics.
- Stat correlations in progress.
 - So far only combine measurements on independent datasets (incl run I).

$$M_{\text{top}} = 172.0 \pm 1.6 \text{ (stat)} \pm 2.2 \text{ (syst)}$$

= $172.0 \pm 2.7 \text{ GeV/}c^2$
 $\chi^2 = 5.1/4 \text{ (28\%)}$

Updated CDF+DO combined result coming...

Keep an Eye on This...

- See some discrepancy between L+jets, Dilepton channel M_{top} measurements.
- Statistically consistent so far:
 - ME(dil) vs Templ(L+jets): $\chi^2 = 2.9/1$, p=0.09. (Accounts for correlated systematics)
- But what if it persists?
 - Could there be a missing systematic?
 - Would have to affects the channels differently...
 - Could our assumption of SM ttbar be incorrect?
- Will be interesting to see all-hadronic measurements.

Stay tuned...

Conclusions

$$M_{\text{top}}(\text{CDF}) = 172.0 \pm 2.7 \text{ GeV/}c^2$$

- CDF has surpassed our run IIa goal of 3 GeV/c² precision on M_{top.}
 - Goal assumed 2 fb⁻¹!
- With in situ JES calibration, dominant "systematic" now scales as 1/sqrt(N).
- 1% uncertainty on M_{top} is in sight as we concentrate on reducing remaining systematics

Backup Slides

Measure JES Using Dijet Mass

Build templates using invariant mass m_{jj} of all non-tagged jet pairs.

- Rather than assuming JES and measuring M_W ...
- Assume M_w and measure JES
- Parameterize $P(m_{jj}; JES)$ same as $P(m_t^{reco}; M_{top})$

Moriond EWK 21

Systematics: ISR/FSR/NLO

- Method in hand to use Drell-Yan events to understand and constrain extra jets from ISR.
 - Constraint scales with luminosity.
 - Easily extendible to FSR.
- MC@NLO sample shows no add'l NLO uncertainty is needed.

March 13, 2006 Moriond EWK 22